On a server, the sentiment dictionaries have to be manually uploaded. On a local machine they can be loaded using {tidytext}. Check to see if they are already loaded (by a previous function run), if they are on disk (which would indicate the code is on a server), or just load using {tidytext}.

get_dictionary(dictionary)

Arguments

dictionary

A string. One of "afinn" (Nielsen, 2013), "nrc" (Mohammad & Turney, 2013) or "bing" (Hu & Liu, 2004), indicating the dictionary to be loaded.

Value

A data frame with two columns: the word and its sentiment according to the requested sentiment dictionary.

References

Hu M. & Liu B. (2004). Mining and summarizing customer reviews. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-2004), Seattle, Washington, USA, Aug 22-25, 2004.

Mohammad S.M. & Turney P.D. (2013). Crowdsourcing a Word–Emotion Association Lexicon. Computational Intelligence, 29(3):436-465.

Nielsen F.A. (2013). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. Proceedings of the ESWC2011 Workshop on 'Making Sense of Microposts': Big things come in small packages 718 in CEUR Workshop Proceedings 93-98. https://arxiv.org/abs/1103.2903.

Silge J. & Robinson D. (2017). Text Mining with R: A Tidy Approach. Sebastopol, CA: O’Reilly Media. ISBN 978-1-491-98165-8.

Examples

get_dictionary("afinn")
#> # A tibble: 2,477 x 2 #> word value #> <chr> <dbl> #> 1 abandon -2 #> 2 abandoned -2 #> 3 abandons -2 #> 4 abducted -2 #> 5 abduction -2 #> 6 abductions -2 #> 7 abhor -3 #> 8 abhorred -3 #> 9 abhorrent -3 #> 10 abhors -3 #> # ... with 2,467 more rows
get_dictionary("nrc")
#> # A tibble: 13,901 x 2 #> word sentiment #> <chr> <chr> #> 1 abacus trust #> 2 abandon fear #> 3 abandon negative #> 4 abandon sadness #> 5 abandoned anger #> 6 abandoned fear #> 7 abandoned negative #> 8 abandoned sadness #> 9 abandonment anger #> 10 abandonment fear #> # ... with 13,891 more rows
get_dictionary("bing")
#> # A tibble: 6,786 x 2 #> word sentiment #> <chr> <chr> #> 1 2-faces negative #> 2 abnormal negative #> 3 abolish negative #> 4 abominable negative #> 5 abominably negative #> 6 abominate negative #> 7 abomination negative #> 8 abort negative #> 9 aborted negative #> 10 aborts negative #> # ... with 6,776 more rows