|
calc_accuracy_per_class()
|
Calculate classifier accuracy for each class and group |
|
calc_bigrams_network()
|
Create and count bigrams |
|
calc_bing_word_counts()
|
Counts of words with a positive or negative sentiment |
|
calc_confusion_matrix()
|
Calculate the confusion matrix |
|
calc_net_sentiment_nrc()
|
Calculate "net sentiment" in a text |
|
calc_net_sentiment_per_tag()
|
Calculate "net positive" and "net negative" sentiment in a text |
|
calc_tfidf_ngrams()
|
Calculate TF-IDFs for unigrams or bigrams |
|
get_dictionary()
|
Check for sentiment dictionaries |
|
plot_bigrams_network()
|
Plot a network of bigrams |
|
plot_bing_word_counts()
|
Plot bar plots of the most frequent words. |
|
plot_confusion_matrix()
|
Plot a confusion matrix |
|
plot_net_sentiment_long_nrc()
|
Plot sentiment counts in a text |
|
plot_net_sentiment_per_tag()
|
Plot "net sentiment" in a text |
|
plot_tfidf_ngrams()
|
Plot the n-grams with the highest TF-IDFs |
|
prep_sentiments_nrc()
|
Pulls NRC Sentiments |
|
prep_tidy_text()
|
Unnest tokens for each label in a labelled text |
|
tidy_filter_null()
|
Filter data frame when filter can be NULL |
|
tidy_net_sentiment_nrc()
|
Order sentiment occurrence table by sentiment counts |