Plot the difference between "net positive" and "net negative" sentiment in a text for each sentiment dictionary and class (if any).

plot_net_sentiment_per_tag(
  net_sentiment_all_dicts,
  target_col_name,
  title = NULL
)

Arguments

net_sentiment_all_dicts

A data frame from calc_net_sentiment_per_tag.

target_col_name

A string with the column name of the target variable.

title

Plot title. Defaults to NULL.

Value

A ggplot (ggplot::geom_col).

Examples

library(experienceAnalysis) books <- janeaustenr::austen_books() # Jane Austen books emma <- paste(books[books$book == "Emma", ], collapse = " ") # String with whole book pp <- paste(books[books$book == "Pride & Prejudice", ], collapse = " ") # String with whole book # Make data frame with books Emma and Pride & Prejudice x <- data.frame( text = c(emma, pp), book = c("Emma", "Pride & Prejudice") ) calc_net_sentiment_per_tag(x, target_col_name = "book", text_col_name = "text") %>% plot_net_sentiment_per_tag( target_col_name = "book", title = "Net sentiment per book for each dictionary" )
calc_net_sentiment_per_tag(x, target_col_name = NULL, text_col_name = "text") %>% plot_net_sentiment_per_tag( target_col_name = NULL, title = "Net sentiment in text for each dictionary" )